Deep Learning for Vision with Caffe Schulung
Caffe ist ein umfassendes Lernframework, das Ausdruck, Geschwindigkeit und Modularität berücksichtigt.
In diesem Kurs wird die Anwendung von Caffe als Deep-Learning-Framework für die Bilderkennung am Beispiel von MNIST erläutert
Publikum
Dieser Kurs eignet sich für Deep Learning Forscher und Ingenieure, die Caffe als Framework nutzen Caffe .
Nach Abschluss dieses Kurses haben die Teilnehmer folgende Möglichkeiten:
- die Struktur und die Bereitstellungsmechanismen von Caffe verstehen
- Installation / Produktionsumgebung / Architektur Aufgaben und Konfiguration durchführen
- Codequalität beurteilen, Debugging und Überwachung durchführen
- Implementieren Sie fortschrittliche Produktionsmethoden wie Schulungsmodelle, Implementieren von Ebenen und Protokollierung
Schulungsübersicht
Einrichtung
- Docker
- Ubuntu
- RHEL / CentOS / Fedora-Installation
- Windows
Caffe Überblick
- Netze, Schichten und Blobs: die Anatomie eines Caffe-Modells.
- Vorwärts / Rückwärts: die wesentlichen Berechnungen von schichtweisen Kompositionsmodellen.
- Verlust: die zu lernende Aufgabe wird durch den Verlust definiert.
- Solver: Der Solver koordiniert die Modelloptimierung.
- Ebenenkatalog: Die Ebene ist die grundlegende Einheit der Modellierung und Berechnung - der Katalog von Caffe enthält Ebenen für moderne Modelle.
- Schnittstellen: Befehlszeile, Python, und MATLAB Caffe.
- Daten: wie man Daten für die Modelleingabe kaffeiniert.
- Caffeinated Convolution: Wie Caffe Faltungen berechnet.
NeueModelle und neuer Code
- Erkennung mit Fast R-CNN
- Sequenzen mit LSTMs und Vision + Sprache mit LRCN
- Pixelweise Vorhersage mit FCNs
- Framework-Design und Zukunft
Beispiele:
- MNIST
Voraussetzungen
Keine
Offene Schulungskurse erfordern mindestens 5 Teilnehmer.
Deep Learning for Vision with Caffe Schulung - Booking
Deep Learning for Vision with Caffe Schulung - Enquiry
Deep Learning for Vision with Caffe - Beratungsanfrage
Beratungsanfrage
Erfahrungsberichte (1)
I genuinely enjoyed the hands-on approach.
Kevin De Cuyper
Kurs - Computer Vision with OpenCV
Maschinelle Übersetzung
Kommende Kurse
Kombinierte Kurse
Advanced Stable Diffusion: Deep Learning for Text-to-Image Generation
21 StundenDiese von einem Dozenten geleitete Live-Schulung in Österreich (online oder vor Ort) richtet sich an fortgeschrittene Datenwissenschaftler, Ingenieure für maschinelles Lernen, Deep-Learning-Forscher und Computer-Vision-Experten, die ihre Kenntnisse und Fähigkeiten im Bereich Deep Learning für die Text-zu-Bild-Erzeugung erweitern möchten.
Am Ende dieses Kurses werden die Teilnehmer in der Lage sein:
- Fortgeschrittene Deep-Learning-Architekturen und -Techniken für die Text-Bild-Erzeugung zu verstehen.
- Komplexe Modelle und Optimierungen für eine hochwertige Bildsynthese zu implementieren.
- Leistung und Skalierbarkeit für große Datensätze und komplexe Modelle zu optimieren.
- Abstimmung von Hyperparametern für bessere Modellleistung und Generalisierung.
- Integration von Stable Diffusion mit anderen Deep-Learning-Frameworks und -Tools
AlphaFold
7 StundenDiese von einem Ausbilder geleitete Live-Schulung in Österreich (online oder vor Ort) richtet sich an Biologen, die verstehen möchten, wie AlphaFold funktioniert, und die AlphaFold-Modelle als Leitfaden für ihre experimentellen Studien verwenden möchten.
Am Ende dieser Schulung werden die Teilnehmer in der Lage sein:
- Die Grundprinzipien von AlphaFold verstehen.
- Lernen, wie AlphaFold funktioniert.
- lernen, wie sie AlphaFold-Vorhersagen und -Ergebnisse interpretieren können.
AI Facial Recognition Development for Law Enforcement
21 StundenDiese von einem Ausbilder geleitete Live-Schulung in Österreich (online oder vor Ort) richtet sich an Einsteiger in der Strafverfolgung, die von der manuellen Gesichtsskizze zur Verwendung von KI-Tools für die Entwicklung von Gesichtserkennungssystemen übergehen möchten.
Am Ende dieser Schulung werden die Teilnehmer in der Lage sein:
- Die Grundlagen der Künstlichen Intelligenz verstehen und Machine Learning.
- die Grundlagen der digitalen Bildverarbeitung und ihre Anwendung in der Gesichtserkennung kennen.
- Fähigkeiten im Umgang mit KI-Tools und Frameworks zur Erstellung von Gesichtserkennungsmodellen entwickeln.
- Praktische Erfahrung im Erstellen, Trainieren und Testen von Gesichtserkennungssystemen sammeln.
- Verstehen ethischer Überlegungen und bewährter Praktiken bei der Verwendung von Gesichtserkennungstechnologie.
Fiji: Introduction to Scientific Image Processing
21 StundenFiji ist ein Open-Source-Bildverarbeitungspaket, das ImageJ (ein Bildverarbeitungsprogramm für wissenschaftliche mehrdimensionale Bilder) und eine Reihe von Plugins für die wissenschaftliche Bildanalyse bündelt.
In dieser von einem Kursleiter geleiteten Live-Schulung lernen die Teilnehmer, wie sie die Fiji-Distribution und das ihr zugrunde liegende Programm ImageJ verwenden, um eine Bildanalyseanwendung zu erstellen.
Am Ende dieser Schulung werden die Teilnehmer in der Lage sein:
- die fortgeschrittenen Programmierfunktionen und Softwarekomponenten von Fiji zu nutzen, um ImageJ zu erweitern
- große 3D-Bilder aus sich überlappenden Kacheln zusammenzusetzen
- eine Fiji-Installation beim Start mit Hilfe des integrierten Update-Systems automatisch zu aktualisieren
- Wählen Sie aus einer großen Auswahl an Skriptsprachen, um eigene Bildanalyselösungen zu erstellen
- Nutzung der leistungsstarken Bibliotheken von Fiji, wie z. B. ImgLib, für große Biobilddatensätze
- Ihre Anwendung einsetzen und mit anderen Wissenschaftlern an ähnlichen Projekten zusammenarbeiten
Format des Kurses
- Interaktive Vorlesung und Diskussion.
- Viele Übungen und Praxis.
- Praktische Umsetzung in einer Live-Laborumgebung.
Optionen zur Kursanpassung
- Wenn Sie eine maßgeschneiderte Schulung für diesen Kurs wünschen, nehmen Sie bitte Kontakt mit uns auf, um dies zu vereinbaren.
Fiji: Image Processing for Biotechnology and Toxicology
14 StundenDiese von einem Kursleiter geleitete Live-Schulung in Österreich (online oder vor Ort) richtet sich an Anfänger und Fortgeschrittene in der Forschung und im Labor, die Bilder von histologischen Geweben, Blutzellen, Algen und anderen biologischen Proben verarbeiten und analysieren möchten.
Am Ende dieses Kurses werden die Teilnehmer in der Lage sein
- Die Fiji-Benutzeroberfläche zu bedienen und die Kernfunktionen von ImageJ zu nutzen.
- Wissenschaftliche Bilder für eine bessere Analyse aufzubereiten und zu verbessern.
- Bilder quantitativ zu analysieren, einschließlich Zellzählung und Flächenmessung.
- Automatisieren von sich wiederholenden Aufgaben mit Makros und Plugins.
- Anpassen von Arbeitsabläufen für spezifische Bildanalyseanforderungen in der biologischen Forschung.
Computer Vision with OpenCV
28 StundenOpenCV (Open Source Computer Vision Library: http://opencv.org) ist eine Open-Source BSD-lizenzierte Bibliothek, die mehrere hundert Computer-Vision-Algorithmen enthält.
Zielgruppe
Dieser Kurs richtet sich an Ingenieure und Architekten, die OpenCV für Computer-Vision-Projekte nutzen möchten
Python and Deep Learning with OpenCV 4
14 StundenDiese von einem Trainer geleitete Live-Schulung in Österreich (online oder vor Ort) richtet sich an Softwareingenieure, die in Python mit OpenCV 4 für Deep Learning programmieren möchten.
Am Ende dieser Schulung werden die Teilnehmer in der Lage sein:
- Bilder und Videos mit OpenCV 4 betrachten, laden und klassifizieren.
- Deep Learning in OpenCV 4 mit TensorFlow und Keras zu implementieren.
- Deep-Learning-Modelle auszuführen und aussagekräftige Berichte aus Bildern und Videos zu erstellen.
OpenFace: Creating Facial Recognition Systems
14 StundenOpenFace ist eine auf Python und Torch basierende Open-Source-Echtzeit-Gesichtserkennungssoftware, die auf der FaceNet-Forschung von Google beruht.
In dieser von einem Trainer geleiteten Live-Schulung lernen die Teilnehmer, wie sie die Komponenten von OpenFace verwenden, um eine Beispielanwendung für die Gesichtserkennung zu erstellen und einzusetzen.
Am Ende dieses Trainings werden die Teilnehmer in der Lage sein:
- mit den OpenFace-Komponenten, einschließlich dlib, OpenVC, Torch und nn4, zu arbeiten, um Gesichtserkennung, -ausrichtung und -transformation zu implementieren
- OpenFace auf reale Anwendungen wie Überwachung, Identitätsüberprüfung, virtuelle Realität, Spiele, Identifizierung von Stammkunden usw. anzuwenden.
Zielgruppe
- Entwickler
- Datenwissenschaftler
Format des Kurses
- Teilweise Vorlesung, teilweise Diskussion, Übungen und intensive praktische Anwendung
Pattern Matching
14 StundenPattern Matching ist eine Technik zur Lokalisierung bestimmter Muster in einem Bild. Sie kann verwendet werden, um das Vorhandensein bestimmter Merkmale in einem aufgenommenen Bild zu bestimmen, z. B. das erwartete Etikett auf einem fehlerhaften Produkt in einer Fertigungsstraße oder die bestimmten Abmessungen eines Bauteils. Es unterscheidet sich von "Pattern Recognition" (das allgemeine Muster auf der Grundlage größerer Sammlungen verwandter Muster erkennt) dadurch, dass es spezifisch vorgibt, wonach wir suchen, und uns dann sagt, ob das erwartete Muster vorhanden ist oder nicht.
Format des Kurses
- Dieser Kurs führt in die Ansätze, Technologien und Algorithmen ein, die im Bereich des Musterabgleichs verwendet werden, wie er für Machine Vision gilt.
Raspberry Pi + OpenCV for Facial Recognition
21 StundenDiese Live-Schulung mit Trainer führt in die Software, die Hardware und den schrittweisen Prozess ein, der erforderlich ist, um ein Gesichtserkennungssystem von Grund auf aufzubauen. Gesichtserkennung ist auch bekannt als Face Recognition.
Die in diesem Kurs verwendete Hardware umfasst einen Rasberry Pi, ein Kameramodul, Servos (optional), etc. Die Teilnehmer sind für die Beschaffung dieser Komponenten selbst verantwortlich. Die verwendete Software umfasst OpenCV, Linux, Python, etc.
Am Ende dieses Kurses werden die Teilnehmer in der Lage sein:
- Linux, OpenCV und andere Softwareprogramme und Bibliotheken auf einem Rasberry Pi zu installieren.
- OpenCV für die Erfassung und Erkennung von Gesichtsbildern zu konfigurieren.
- die verschiedenen Optionen für die Verpackung eines Rasberry Pi Systems für den Einsatz in realen Umgebungen zu verstehen.
- Anpassung des Systems für eine Vielzahl von Anwendungsfällen, einschließlich Überwachung, Identitätsüberprüfung, etc.
Format des Kurses
- Teilweise Vorlesung, teilweise Diskussion, Übungen und umfangreiche praktische Übungen
Hinweis
- Andere Hardware- und Softwareoptionen sind: Arduino, OpenFace, Windows, usw. Wenn Sie eine dieser Optionen nutzen möchten, kontaktieren Sie uns bitte, um dies zu arrangieren.
Scilab
14 StundenScilab ist eine gut entwickelte, kostenlose und quelloffene Hochsprache für die wissenschaftliche Datenbearbeitung. Die zentrale Datenstruktur wird für Statistiken, Grafiken und Animationen, Simulationen, Signalverarbeitung, Physik, Optimierung usw. verwendet und vereinfacht viele Arten von Problemen im Vergleich zu Alternativen wie FORTRAN und C-Derivaten. Es ist mit Sprachen wie C, Java und Python kompatibel und eignet sich daher als Ergänzung zu vorhandenen Systemen.
In dieser von Lehrern geleiteten Schulung lernen die Teilnehmer die Vorteile von Scilab Vergleich zu Alternativen wie Matlab, die Grundlagen der Scilab Syntax sowie einige erweiterte Funktionen kennen und können je nach Bedarf auf andere weit verbreitete Sprachen zugreifen. Der Kurs wird mit einem kurzen Projekt zum Thema Bildverarbeitung abgeschlossen.
Am Ende dieser Schulung erhalten die Teilnehmer einen Einblick in die Grundfunktionen und einige fortgeschrittene Funktionen von Scilab und verfügen über die Ressourcen, um ihr Wissen weiter auszubauen.
Publikum
- Datenwissenschaftler und Ingenieure, insbesondere mit Interesse an Bildverarbeitung und Gesichtserkennung
Format des Kurses
- Teilvorlesung, Teildiskussion, Übungen und intensives Üben mit Abschlussprojekt
Introduction to Stable Diffusion for Text-to-Image Generation
21 StundenDiese von einem Dozenten geleitete Live-Schulung (online oder vor Ort) richtet sich an Datenwissenschaftler, Ingenieure für maschinelles Lernen und Forscher im Bereich Computer Vision, die Stable Diffusion nutzen möchten, um hochwertige Bilder für eine Vielzahl von Anwendungsfällen zu erzeugen.
Am Ende dieser Schulung werden die Teilnehmer in der Lage sein:
- Die Prinzipien von Stable Diffusion und seine Funktionsweise für die Bilderzeugung zu verstehen.
- Erstellen und Trainieren von Stable Diffusion-Modellen für Bilderzeugungsaufgaben.
- Anwendung von Stable Diffusion auf verschiedene Bilderzeugungsszenarien, wie Inpainting, Outpainting und Bild-zu-Bild-Übersetzung.
- Optimieren der Leistung und Stabilität von Stable Diffusion-Modellen.
Vision Builder for Automated Inspection
35 StundenDieser von einem Trainer geleitete Live-Kurs in Österreich (online oder vor Ort) richtet sich an fortgeschrittene Fachleute, die Vision Builder AI zur Gestaltung, Implementierung und Optimierung automatisierter Inspektionsysteme für SMT-Prozesse (Surface-Mount Technology) einsetzen möchten.
Am Ende des Kurses werden die Teilnehmer in der Lage sein:
- Automatische Inspektionen mit Vision Builder AI einzurichten und zu konfigurieren.
- Hochwertige Bilder für die Analyse aufzuzeichnen und vorzubereiten.
- Logikbasierte Entscheidungen zur Defektenerkennung und Prozessvalidierung umzusetzen.
- Inspektionsberichte zu erstellen und das Systemleistung zu optimieren.